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Investigating the structure of the older adult brain at high spatial resolution is of high significance, and a dedicated 

older adult structural brain template with sub-millimeter resolution is currently lacking. Therefore, the purpose 

of this work was twofold: (A) to develop a 0.5mm isotropic resolution standardized T1-weighted template of the 

older adult brain by applying principles of super resolution to high quality MRI data from 222 older adults (65–

95 years of age), and (B) to systematically compare the new template to other standardized and study-specific 

templates in terms of image quality and performance when used as a reference for alignment of older adult 

data. The new template exhibited higher spatial resolution and improved visualization of fine structural details 

of the older adult brain compared to a template constructed using a conventional template building approach 

and the same data. In addition, the new template exhibited higher image sharpness and did not contain image 

artifacts observed in some of the other templates considered in this work. Due to the above enhancements, the 

new template provided higher inter-subject spatial normalization precision for older adult data compared to the 

other templates, and consequently enabled detection of smaller inter-group morphometric differences in older 

adult data. Finally, the new template was among those that were most representative of older adult brain data. 

Overall, the new template constructed here is an important resource for studies of aging, and the findings of the 

present work have important implications in template selection for investigations on older adults. 
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. Introduction 

Human brain T1-weighted (T1w) templates provide a standard ref-

rence for brain MRI investigations. Template-based studies in older

dults require templates that are representative of the features of

he aging brain ( Dickie et al., 2016 a, 2016b ; Lemaître et al., 2005 ;

atsumae et al., 1996 ; Sullivan et al., 1995 ; Ridwan et al., 2021 )

nd use of templates constructed from younger or middle-aged adult

ata can negatively impact the accuracy of investigations in older

dults ( Ridwan et al., 2021 ; Van Hecke et al., 2011 ; Zhang and

rfanakis, 2018 ). To date, the publicly available library of standard-

zed T1w brain templates includes only few that were constructed exclu-

ively from older adult data, and several that combined data from young

dults, middle-aged individuals and older adults ( Ridwan et al., 2021 ).

he dedicated older adult templates as well as most other templates have
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 voxel size of 1 ×1 ×1mm 

3 or larger. The introduction of advanced im-

ge reconstruction techniques ( Jia et al., 2016 ; Jafari-Khouzani, 2014 ;

anjón et al., 2010 a, 2010 b; Zhang et al., 2009 ), AI-based resolu-

ion enhancements ( Chen et al., 2018 ; Pham et al., 2019 ; Sánchez and

ilaplana, 2018 ; Zeng et al., 2018 ), and advances in neuroimaging soft-

are ( Manjón et al., 2020 ; Park et al., 2014 ; Sone et al., 2016 ) and MRI

ardware have sparked an interest in studying the older adult brain

t submillimeter resolution ( Bookheimer et al., 2019 ; de Flores et al.,

015 ; Yushkevich et al., 2015 ; ADNI3 http://adni.loni.usc.edu). Use

f the currently available lower resolution dedicated older adult T1w

rain templates limits the accuracy of template-based processing steps

 Zhao et al., 2016 ), reducing the sensitivity to small effects and los-

ng important information in small structures. There is therefore a clear

eed for a high resolution T1w template of the older adult brain. How-

ver, collecting high resolution T1w data from a large number of older
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dults in order to construct such a template is still complicated due to

ong scan times, motion artifacts, and/or low signal to noise ratio. 

Super resolution algorithms are a set of methods used to enhance the

patial resolution of an image, either from multiple low resolution im-

ges of the same object with slightly different perspectives ( Farsiu et al.,

004 ; Kim et al., 2015 ; Yuan et al., 2010 ), or from a single low resolution

mage ( Bevilacqua et al., 2012 ; Glasner et al., 2009 ; Ledig et al., 2016 ;

im et al., 2017 ; Rueda et al., 2013 ). In neuroimaging, multiple im-

ge super resolution overcomes some of the aforementioned limitations

ssociated with acquiring MRI data in older adults at high spatial reso-

ution ( Plenge et al., 2012 ; Scherrer et al.,2012 ; Gholipour et al., 2010 ;

reenspan et al., 2002 ; He et al., 2007 ; Li et al., 2019 ; Rousseau et al.,

006 ; Shilling et al., 2009 ; Sui et al., 2019 ). The concept of multiple

mage super resolution can also be adapted for the construction of a

igh resolution population-based brain MRI template from low resolu-

ion images on individual subjects, assuming careful alignment of indi-

iduals to a common space and considering every co-registered image

s a different realization of the template brain. A similar approach was

uccessfully used in the development of a high angular (not spatial) res-

lution diffusion imaging (HARDI) brain template from low angular res-

lution diffusion data on individual subjects (i.e. super resolution in an-

ular sampling) ( Varentsova et al., 2014 ). This approach therefore holds

romise for the development of a high spatial resolution T1w template

f the older adult brain from lower spatial resolution data on individ-

al subjects, and avoids the limitations associated with collecting high

esolution data on a large number of older adults. 

The purpose of this work was twofold: (A) to develop a high resolu-

ion standardized T1w template of the older adult brain using principles

f super resolution as part of an ongoing project to develop a comprehen-

ive older adult brain atlas named Multichannel Illinois Institute of Tech-

ology & Rush university Aging (MIITRA) atlas, and (B) to systemati-

ally compare the new template to other standardized and study-specific

emplates in terms of image quality and performance when used as a ref-

rence for alignment of older adult data. First, T1w data with isotropic

mm voxels were collected on a large number of well-characterized non-

emented older adults (65–95 years of age). Next, the 0.5mm resolution

IITRA T1w template was generated by applying principles of super res-

lution to the available data. The image quality of the new template was

ompared to that of other standardized and study-specific templates in

erms of the ability to resolve small brain structures, image sharpness,

nd presence of artifacts. The performance of the new template when

sed as a reference for alignment of older adult data was evaluated in

erms of the inter-subject spatial normalization precision, ability to de-

ect small inter-group morphometric differences, and representativeness

f the older adult brain. 

. Materials and methods 

.1. Data 

Two older adult brain MRI datasets were used in this work. Dataset 1

as used for constructing the new high resolution T1w template. Dataset

 consisted of T1w brain MRI data collected on 222 community-based

on-demented older adults (65–95 age-range, mean ± sd age = 80.1 ± 8.3

ears, 50% female) participating in the Rush Memory and Aging Project

 Bennett et al., 2018 ). All participants signed an informed consent ac-

ording to procedures approved by the institutional review board of

ush University Medical Center. T1w data were collected on a 3 Tesla

T) Siemens scanner for 171 participants and on a 3 T Philips scanner

or 51 participants using a 3D magnetization prepared rapid acquisition

radient echo (MPRAGE) sequence with the following parameters: 3 T

iemens scanner: TR = 2300 ms, TE = 2.98 ms, TI = 900 ms, flip-angle = 9°,

eld of view = 256 mm x 256 mm, 176 slices, acquired voxel size = 1 ×1 ×1

m 

3 , and an acceleration factor of 2; 3 T Philips scanner: TR = 8 ms,

E = 3.7 ms, TI = 955 ms, flip-angle = 8°, field of view = 240 mm x 228 mm,
2 
81 slices, acquired voxel size = 1 ×1 ×1 mm 

3 , and an acceleration factor

f 2. 

Dataset 2 was used first to construct a study-specific template and

hen to evaluate the performance of the different templates considered

n this work. Dataset 2 consisted of T1w brain MRI data collected on 222

on-demented older adults (65-95 age-range, mean ± sd age = 80.1 ± 5.7

ears, 50% female) participating in the Alzheimer’s Disease Neuroimag-

ng Initiative 3 (ADNI3) (http://adni.loni.usc.edu). ADNI was launched

n 2003 as a public-private partnership, led by Dr. Michael W. Weiner

o investigate whether serial MRI, positron emission tomography (PET),

ther biological markers, and clinical and neuropsychological assess-

ent can be combined to measure the progression of mild cognitive

mpairment and early Alzheimer’s disease. T1w data were collected on

 3 T Siemens scanner for 163 individuals and on a 3 T Philips scan-

er for 59 individuals using 3D MPRAGE sequences with the follow-

ng parameters: 3 T Siemens scanner: TR = 2,300 ms, TE = 2.98 ms,

I = 900 ms, flip ‐angle = 9°, field of view = 256 mm ×240 mm, 208

lices, acquired voxel size = 1 ×1 ×1 mm 

3 , and an acceleration factor of

; 3 T Philips scanner: TR = 6.5 ms, TE = 2.9 ms, TI = 900 ms,

ip ‐angle = 9°, field of view = 256 mm ×256 mm, 211 slices, acquired

oxel size = 1 ×1 ×1 mm 

3 , and an acceleration factor of 2. 

.2. Preprocessing 

All raw T1w images were skull-stripped (MASS) ( Doshi et al., 2013 ;

eckemann et al., 2015 ), segmented into gray matter (GM), white mat-

er (WM), and cerebrospinal fluid (CSF) (CAT) ( Farokhian et al., 2017 ),

nd corrected for bias field inhomogeneity using the tissue probability

aps generated by CAT as priors (N4) ( Tustison et al., 2010 ). The re-

ulting images were visually inspected. Image intensities were converted

o z-scores using the mean and standard deviation of intensities in the

ombined GM and WM masks. For Dataset 2, the gray matter was also

egmented into Desikan-Killiany regions using FreeSurfer ( Fischl, 2012 ;

cCarthy et al., 2015 ) without manual corrections. 

.3. Template construction 

The approach used in this work for high resolution template con-

truction combined a widely used iterative image registration pro-

ess ( Fonov et al., 2011 ; Guimond et al., 2000 ; Joshi et al., 2004 ;

idwan et al., 2021 ) and concepts of multiple image super resolu-

ion. The entire process can be divided into 6 steps. Steps 1-3 gener-

lly followed the method described in Ridwan et al. with modifications

 Ridwan et al., 2021 ), and steps 4-6 included the super resolution por-

ion of template construction. 

.3.1. Step 1: Rigid registration and construction of an initial template 

The preprocessed images from Dataset 1 were rigidly registered

o the previously constructed T1w template of the MIITRA atlas

 Ridwan et al., 2021 ) referred to as MIITRA_1mm in this work ( Fig. 1 )

the MIITRA_1mm template space was up-sampled to 0.5 ×0.5 ×0.5mm 

3 

oxels using linear interpolation prior to performing the rigid regis-

rations). Rigid registration used mutual information as the cost func-

ion and linear resampling (Appendix 1). An initial template with

.5 ×0.5 ×0.5mm 

3 voxel-size was generated by using weighted averag-

ng on the rigidly registered images: 

 𝑘 = 

∑𝑁 

𝑖 =1 𝑋 𝑘𝑖 ⋅ 𝜔 𝑘𝑖 ∑𝑁 

𝑖 =1 𝜔 𝑘𝑖 

here 𝑍 𝑘 was the average signal in voxel 𝑘 of the initial template, 𝑋 𝑘𝑖 

as the i th signal in voxel 𝑘 , 𝜔 𝑘𝑖 was the weight applied to 𝑋 𝑘𝑖 , and 𝑁

as the total number of signals in voxel 𝑘 . The weight 𝜔 𝑘𝑖 was deter-

ined using a Gaussian kernel centered at the median signal in voxel

 : 

 𝑘𝑖 = 

1 
𝜎

√
2 𝜋

𝑒 
− ( 𝑋 𝑘𝑖 − ̃𝑥 𝑘 ) 

2 

2 𝜎𝑘 2 
𝑘 
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Fig. 1. Schematic representation of the approach used to construct the MIITRA_0.5mm T1-weighted brain template. 
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here �̃� 𝑘 was the median signal in voxel 𝑘 , and 𝜎𝑘 was given by: 

𝑘 = 

√ ∑𝑁 

𝑖 =1 
(
𝑋 𝑘𝑖 − �̃� 𝑘 

)2 
𝑁 

The above weighted averaging technique is based on the widely

sed kappa-sigma clipping average method ( Jörsäter, 2008 ; Lalys et al.,

010 ) and is less sensitive to the effects of outliers due to residual mis-

egistration. 

.3.2. Step 2: Iterative affine registration and construction of a new initial 

emplate 

The rigidly co-registered and linearly resampled images were

ffinely registered to the initial template using ANTs ( Avants et al.,

008 , 2009 , 2010 , 2011 ) SyN affine registration ( Fig. 1 ). Both cross-

orrelation and mutual information were separately used as cost

unctions (Appendix 1). A shape update transformation ( Avants, and

ee, 2004 ) was also generated from all resulting affine transforma-

ions (shape update was conducted using the built-in algorithm of the

NTs tool buildtemplateparallel.sh). The rigid, affine and shape update

ransformations were concatenated for each participant and were used

o transform the raw T1w images of Dataset 1 (after the basic pre-

rocessing of Section 2.2 ) to a common minimum deformation space

ith 0.5 ×0.5 ×0.5mm 

3 voxel-size (using linear resampling). The Gaus-

ian weighted averaging approach of Step 1 was applied to the warped

mages to generate a new initial template. Using this new initial tem-

late as reference, Step 2 was repeated iteratively until the Pearson cross

orrelation (PCC) between two templates of consecutive iterations was

reater than 0.9995 ( Ridwan et al., 2021 ). Convergence was reached

fter 9 iterations. 

.3.3. Step 3: Iterative nonlinear registration 

The affinely co-registered images (obtained by applying the combi-

ation of the rigid transformation from Step 1 and the affine and shape
3 
pdate transformation from the final iteration of Step 2 on the prepro-

essed images of Section 2.2 with linear resampling) were nonlinearly

egistered using ANTs SyN to the template generated in the final itera-

ion of Step 2, and weighted averaging was used (as in Steps 1 and 2)

o generate a new initial template ( Fig. 1 ). Both cross-correlation and

utual information were separately used as cost functions in this step

Appendix 1). This initial template was then used as reference and Step

 was repeated iteratively until PCC > 0.9995 between templates of con-

ecutive iterations. Convergence was reached after 7 iterations. 

.3.4. Step 4: Inversion and concatenation of the transformations 

The rigid transformation from Step 1, the affine and shape update

ransformations from the final iteration of Step 2, and the affine, non-

inear and shape update transformations from the final iteration of Step

 were inverted and concatenated into a single transformation for each

articipant ( Fig. 1 ). The shape update transformations do not have an

nalytic inverse, but approximate inverted transformations were gener-

ted using the command InvertTransformation included in DRTAMAS

 Irfanoglu et al., 2016 ) and were empirically found to be suitable. 

.3.5. Step 5: Mapping signals from raw image space to template space 

The transformations obtained in Step 4 were used to map the signals

rom the raw images (after the basic preprocessing of Section 2.2 ) to ex-

ct physical locations in template space with sub-voxel accuracy ( Fig. 1 ).

his process generated a point cloud of signals inside each voxel in tem-

late space. No interpolation was used. This approach is in essence the

pplication of the concept of multiple image super resolution on the par-

icipants of Dataset 1 as if they were multiple realizations of the same

rain. 

.3.6. Step 6: Voxel-wise weighted averaging 

The final signal in each 0.5 ×0.5 ×0.5mm 

3 voxel in template space

as calculated by applying Gaussian weighted averaging (as in Step 1)
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Fig. 2. Examples of sagittal, coronal and axial slices of the MIITRA_0.5mm. The 

sagittal slices are from the right hemisphere. 
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n the signals mapped to that voxel. The resulting template is referred

o as MIITRA_0.5mm in the rest of this work ( Fig. 2 ) and is available

or download at www.nitrc.org/projects/miitra . To add skull and other

ead structures to this brain-only template, the strategy by Rohlfing et al

as employed ( Ridwan et al., 2021 ; Rohlfing et al., 2012 ). The brain-

nly template was considered in the rest of this work. 

.4. Comparison of MIITRA_0.5mm to other standardized and 

tudy-specific templates 

The MIITRA_0.5mm template was compared to other standard-

zed and study-specific templates with different voxel-sizes: three stan-

ardized templates with 0.5mm isotropic voxels, namely (a) MCALT

 Schwarz et al., 2017 ), (b) ICBM2009b ( Fonov et al., 2009 , 2011 ),

nd (c) Colin27 ( Aubert-Broche et al., 2006 ; Holmes et al., 1998 ),

d) a study specific (SS) template with 0.5 ×0.5 ×0.5mm 

3 voxel-size con-

tructed by applying Steps 1 through 3 ( Sections 2.3.1 –2.3.3 ) to Dataset

, (e) HCP-1200 with 0.7mm isotropic voxels ( Glasser et al., 2013 ),

ve templates with 1mm isotropic voxels, namely (f) MIITRA_1mm

 Ridwan et al., 2021 ), (g) ICBM2009c ( Fonov et al., 2009 , 2011 ),

h) OASIS ( Avants and Tustison, 2018 ), (i) SRI24 ( Rohlfing et al., 2010 ),

j) UNC-Adult ( https://www.nitrc.org/projects/unc_brain_atlas/ ), and

k) IXI-ANTs with 1.2 ×0.9375 ×0.9375mm 

3 voxel-size ( Avants and

ustison, 2018 ). A summary of the characteristics of all templates, in-

luding the age-range of the individuals participating in each one, is pro-

ided in Table 1 and image examples are shown in Fig. 3 . Comparison of

IITRA_0.5mm to the above templates aimed at assessing if super reso-

ution was achieved and at evaluating the new template in terms of im-

ge sharpness, presence of artifacts, inter-subject spatial normalization

recision for older adult data, ability to detect small inter-group mor-

hometric differences, and representativeness of the older adult brain.

ore details on the evaluation of MIITRA_0.5mm are provided in the

ollowing sub-sections. 

.4.1. Evaluation of super resolution, image sharpness and artifacts 

To evaluate the outcome of the application of super resolution prin-

iples in template construction, the ability to resolve small brain struc-
4 
ures in MIITRA_0.5mm template was compared to that in MIITRA_1mm

hich was previously constructed using conventional template con-

truction techniques and the exact same data ( Ridwan et al., 2021 ). This

omparison was conducted by visual inspection. Image sharpness was

ssessed for MIITRA_0.5mm and all other templates by means of the

ormalized power spectra along the left-right (LR), anterior-posterior

AP) and superior-inferior (SI) axes ( Ridwan et al., 2021 , Zhang and Ar-

anakis, 2018 ; Zhang et al., 2011 ). The power spectral density for the

R axis was first calculated in each coronal slice as follows: 

 𝑆 𝐷 𝐿𝑅 = 

∑
𝑘 𝑆𝐼 

|||𝐹 (𝑘 𝑆𝐼 , 𝑘 𝐿𝑅 )|||, 
here 𝐹 ( 𝑘 𝑆𝐼 , 𝑘 𝐿𝑅 ) is the 2D FFT of a coronal slice, and the results were

veraged over all coronal slices. Similarly, the power spectral density

or the AP axis was first calculated in each axial slice as follows: 

 𝑆 𝐷 𝐴𝑃 = 

∑
𝑘 𝐿𝑅 

|||𝐹 (𝑘 𝐿𝑅 , 𝑘 𝐴𝑃 )|||, 
here 𝐹 ( 𝑘 𝐿𝑅 , 𝑘 𝐴𝑃 ) is the 2D FFT of an axial slice, and the results were

veraged over all axial slices. Finally, the power spectral density for the

I axis was first calculated in each sagittal slice as follows: 

 𝑆 𝐷 𝑆𝐼 = 

∑
𝑘 𝐴𝑃 

|||𝐹 (𝑘 𝐴𝑃 , 𝑘 𝑆𝐼 )|||, 
here 𝐹 ( 𝑘 𝐴𝑃 , 𝑘 𝑆𝐼 ) is the 2D FFT of a sagittal slice, and the results were

veraged over all sagittal slices. The average power spectral density for

ach axis was normalized by the corresponding maximum value. The

resence of image artifacts and atypical structures was evaluated in each

emplate by visual inspection. 

.4.2. Evaluation of inter-subject spatial normalization precision 

The precision of inter-subject spatial normalization of older adult

ata achieved when MIITRA_0.5mm is used as reference was com-

ared to that of all other templates, using four different approaches.

or this evaluation, older adult data from Dataset 2 were registered

o each of the templates using ANTs registration ( Avants et al., 2011 ;

lein, 2016 ). The precision of inter-subject spatial normalization was

rst assessed by means of the pairwise normalized cross-correlation

PNCC) ( Ferreira et al., 2014 ; Wang et al., 2004 ) of spatially normal-

zed images: 

 𝑁𝐶 𝐶 𝑖𝑗 = 

1 
𝑁 

⋅

∑𝑁 

𝑚 =1 
(
𝑋 𝑚𝑖 − 𝜇𝑖 

)
⋅
(
𝑋 𝑚𝑗 − 𝜇𝑗 

)
𝜎𝑖 ⋅ 𝜎𝑗 

here 𝑋 𝑚𝑖 and 𝑋 𝑚𝑗 are the non-zero brain signals in voxel 𝑚 of partic-

pants 𝑖 and 𝑗, 𝜇𝑖 , 𝜎𝑖 and 𝜇𝑗 , 𝜎𝑗 are the mean and standard deviation

f the intensities of all the voxels of participants 𝑖 and 𝑗, and 𝑁 is the

otal number of voxels. The average and standard deviation of PNCC

ver all pairs of spatially normalized data (222 ×221/2 = 24,531 pairs)

ere computed for normalization to each template. One-way ANOVA

nd Tukey-Kramer post-hoc tests were performed to ascertain statisti-

ally significant differences in PNCC across templates. Differences with

 < 0.05 were considered significant. 

Second, the transformations of Dataset 2 data to each template

ere applied to the corresponding gray matter labels of participants

n Dataset 2 and the pairwise overlap of regional gray matter labels

PORGM) ( Crum et al., 2006 ) was calculated for each template: 

 𝑂 𝑅𝐺 𝑀 𝑖𝑗 = 

∑
𝐿 𝐿 𝑖 ∩ 𝐿 𝑗 ∑
𝐿 𝐿 𝑖 ∪ 𝐿 𝑗 

here 𝐿 𝑖 ∩ 𝐿 𝑗 and 𝐿 𝑖 ∪ 𝐿 𝑗 are the intersection and union of label 𝐿 for

articipants 𝑖 and 𝑗. In addition, the pairwise Jaccard index (PJI) was

alculated for each gray matter label (homologous labels in contralat-

ral hemispheres were combined) and for spatial normalization to each

emplate ( Rohlfing et al., 2012 ): 

 𝐽 𝐼 𝑖𝑗 = 

𝐿 𝑖 ∩ 𝐿 𝑗 

𝐿 𝑖 ∪ 𝐿 𝑗 

https://www.nitrc.org/projects/miitra
https://www.nitrc.org/projects/unc_brain_atlas/
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Table 1 

T1-weighted templates evaluated in this work. 

Name Number of persons considered in template construction Age range (years) Voxel-size 

MIITRA_0.5mm 222 65–95 0.5 ×0.5 ×0.5mm 

3 

MIITRA_1mm ( Ridwan et al., 2021 ) 222 65–95 1 ×1 ×1mm 

3 

SS 222 65–95 0.5 ×0.5 ×0.5mm 

3 

MCALT (version 1.4) ( Schwarz et al., 2017 ) 202 30–92 0.5 ×0.5 ×0.5mm 

3 

ICBM2009b (nonlinear asymmetric) ( Fonov et al., 2009 , 2011 ) 152 18–44 0.5 ×0.5 ×0.5mm 

3 

Colin27 (version 2008) ( Aubert-Broche et al., 2006 , Holmes et al., 1998 ) 1(27 scans) 33 0.5 ×0.5 ×0.5mm 

3 

HCP-1200 (S1200 group average) ( Glasser et al., 2013 ) 1113 22–35 0.7 ×0.7 ×0.7mm 

3 

ICBM2009c (nonlinear asymmetric) ( Fonov et al., 2009 , 2011 ) 152 18–44 1 ×1 ×1mm 

3 

OASIS (version 2) ( Avants and Tustison, 2018 ) 30 18–90 1 ×1 ×1mm 

3 

SRI24 (version 2.0) ( Rohlfing et al., 2010 ) 24 19–84 1 ×1 ×1mm 

3 

UNC-Adult (version 2) https://www.nitrc.org/projects/unc_brain_atlas/ 50 20–50 1 ×1 ×1mm 

3 

IXI-ANTs (version 2) ( Avants and Tustison, 2018 ) 560 20–90 1.2 ×0.94 ×0.94mm 

3 

Fig. 3. Examples of axial slices from the T1-weighted templates evaluated in this work. Templates for which a brain mask was not available were skull stripped 

using HD-BET ( Isensee et al., 2019 ). The dynamic range was set for each template as follows: 0.5–7.5 for MIITRA_0.5mm, 0.5–7.5 for MIITRA_1mm, 2.5–9.75 for 

SS, 1000-21930 for MCALT, 15–91.5 for ICBM2009b, 3000000–47166900 for Colin27, 200-990 for HCP-1200, 15–91.5 for ICBM2009c, 0-9 for OASIS, 50–850 for 

SRI24, 350–900 for UNC-Adult, and 0.8–4.0 for IXI-ANTs. 
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The average and standard deviation of PORGM and PJI over all pairs

f spatially normalized data (222 ×221/2 = 24,531 pairs) were com-

uted for normalization to each template. One-way ANOVA and Tukey-

ramer post-hoc tests were performed to ascertain statistically signifi-

ant differences in PORGM and PJI across templates. Differences with

 < 0.05 were considered significant. It should be noted that gray matter

arcellation using a single template was used here merely to evaluate

recision of inter-subject spatial normalization when different templates

re used as references, and it does not suggest that using a single tem-

late for gray matter parcellation is ideal. 

Third, maps of the standard deviation of signals across spatially nor-

alized data from Dataset 2 were generated for normalization to each

emplate. Whole brain cumulative distributions of the standard devia-

ion were compared across templates using the one-sided two-sample

olmogorov-Smirnov (KS) test and differences were considered signifi-

ant at p < 0.05. 

Finally, a fourth approach for evaluating the spatial normalization

recision achieved when using different templates as reference was

ased on the standard deviation of cortical thickness of spatially nor-

alized older adult data. The main idea here is that, if spatial nor-

alization was perfect, the cortex would be perfectly matched across

articipants in template space and, therefore, all spatially normalized

S  

5 
ata would have the exact same cortical thickness in template space

i.e. zero standard deviation of cortical thickness). Imperfectly normal-

zed data may have different cortical thickness in template space (i.e.

igher standard deviation of cortical thickness). Thus, the standard de-

iation of cortical thickness of spatially normalized data can be used

o evaluate spatial normalization precision. The ANTs implementation

 Tustison et al., 2014 ) of the diffeomorphic registration-based cortical

hickness (DiReCT) ( Das et al., 2009 ) was used to compute continuous

stimates of cortical thickness in template space. DiReCT encodes thick-

ess measures within the volumetric domain in the form of maps, which

llows for voxel-wise analysis. Maps of the standard deviation of cortical

hickness across spatially normalized data from Dataset 2 were gener-

ted for normalization to each template. Cumulative distributions of the

tandard deviation of cortical thickness were compared across templates

sing the one-sided two-sample Kolmogorov-Smirnov (KS) test and dif-

erences were considered significant at p < 0.05. 

.4.3. Evaluation of the ability to detect small inter-group differences in 

oxel-based morphometry studies 

The impact of spatial normalization precision achieved with MI-

TRA_0.5mm on the ability to detect small inter-group morphometric

ifferences ( Good et al., 2002 ; Karas et al., 2003 ; Radua et al., 2014 ;

almond et al., 2002 ) was assessed using power analysis ( Wicks et al.,

https://www.nitrc.org/projects/unc_brain_atlas/
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Fig. 4. Examples of fine structures that are better resolved in MIITRA_0.5mm 

compared to MIITRA_1mm, demonstrating that the application of multiple 

image super resolution in template construction successfully generated a 

population-based brain MRI template with higher spatial resolution. 
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Fig. 5. Normalized power spectra for the (A) left-right, (B) anterior-posterior, 

(C) superior-inferior axes, separately, for the MIITRA_0.5mm and other stan- 

dardized and study-specific templates. 

Fig. 6. Examples of artifacts seen in some of the standardized templates in- 

cluded in this work that are not present in the MIITRA_0.5mm template. 
011 ; Zhang, and Arfanakis, 2018 ) and compared to that of other tem-

lates. The transformations from registration of Dataset 2 to the dif-

erent templates were applied to the corresponding gray matter tis-

ue probability maps and the resulting maps were smoothed using a

aussian filter with sigma of 3.4mm, in accordance with unmodulated

oxel-based morphometry procedures ( Good et al., 2002 ; Radua et al.,

014 ). Maps of the standard deviation of the smoothed maps were then

sed in power analyses to assess the minimum morphometric differ-

nces that can be detected across two groups, assuming 100 participants

er group, significance at p < 0.05, and power > 0.95. Maps of the mini-

um detectable inter-group morphometric differences were generated

or MIITRA_0.5mm and all other templates, and cumulative distribu-

ions were compared across templates using the one-sided two-sample

olmogorov-Smirnov (KS) test. Differences were considered significant

t p < 0.05. 

.4.4. Evaluation of the representativeness of the older adult brain 

The degree to which MIITRA_0.5mm is representative of the older

dult brain was assessed via maps of the average log-Jacobian determi-

ant of the deformations obtained for spatial normalization of Dataset 2
6 
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Fig. 7. Boxplots of the (A) pairwise normalized cross-correlation (PNCC) and (B) pairwise overlap of regional gray matter labels (PORGM), and (C) average pairwise 

Jaccard index (PJI) for individual gray matter labels over all spatially normalized data of Dataset 2 when using different templates as reference. Caudal anterior 

cingulate (CAC), caudal middle frontal (CMF), isthmus cingulate (IC), lateral orbitofrontal (LOF), medial orbitofrontal (MOF), paracentral (PAC), pars opercularis 

(PAOC), pars orbitalis (PAO), pars triangularis (PAT), posterior cingulate (POC), precentral (PRC), rostral anterior cingulate (RAC), rostral middle frontal (RMF), 

superior frontal (SF), frontal pole (FP), banks of the superior temporal sulcus (BKS), entorhinal (ETR), fusiform (FF), inferior temporal (IT), middle temporal (MT), 

parahippocampal (PAH), superior temporal (ST), temporal pole (TP), transverse temporal (TRT), insula (INS), inferior parietal (IFP), postcentral (POTC), precuneus 

(PREC), superior parietal (SPP), supramarginal (SUPRM), cuneus (CN), lateral occipital (LAO), lingual (LIG), pericalcarine (PRC), cerebellum cortex (CC), thalamus 

(T), caudate (CD), putamen (PT), pallidum (PAL), hippocampus (HIP), amygdala (AMY), accumbens area (ACA), ventral diencephalon (VDC). 
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nd was compared to that of all other templates. The value in each voxel

f these maps represented how data were deformed on average during

patial normalization ( Leow et al., 2007 ; Yanovsky et al., 2009 ). Zero

alues represented no change in volume, values greater than zero indi-

ated volume expansion, and values lower than zero indicated volume

ontraction. One-sided two-sample Kolmogorov-Smirnov (KS) test was

sed to compare histograms of the average log-Jacobian determinant

cross templates, separately for expansion and contraction. Differences

ere considered significant at p < 0.05. 

.5. Data and template availability 

The data used in this work can be assessed by submitting a re-

uest to www.radc.rush.edu. MIITRA_0.5mm is available for download

t www.nitrc.org/projects/miitra . 

. Results 

.1. Super resolution, image sharpness and artifacts 

Fine structures that were not visible in MIITRA_1mm were resolved

n MIITRA_0.5mm ( Fig. 4 ) demonstrating that the application of mul-

iple image super resolution in template construction successfully gen-

rated a population-based brain MRI template with higher spatial reso-

ution. The fine structures resolved in MIITRA_0.5mm include features

n the cerebellum, the anterior commissure, inter-thalamic adhesion

nd others ( Fig. 4 ). Furthermore, visual inspection showed that MI-

TRA_0.5mm was among the templates with the highest image sharp-
7 
ess ( Fig. 3 ). This was supported by comparing the normalized power

pectra across templates, which showed a higher energy at high spatial

requencies over all axes for MIITRA_0.5mm compared to all other tem-

lates ( Fig. 5 ) (MIITRA_0.5mm was also superior to a 0.5mm template

enerated by resampling the MIITRA_1mm template using linear inter-

olation; see Appendix 2). MIITRA_0.5mm was also relatively free of im-

ge artifacts in contrast to the hyperintense structures seen in Colin27,

CBM2009b, ICBM2009c and OASIS, and the atypical structures seen in

CALT ( Fig. 6 ). 

.2. Inter-subject spatial normalization precision 

The precision of inter-subject spatial normalization of older adult

ata from Dataset 2 achieved when using the MIITRA_0.5mm template

s reference was higher than that achieved with other templates as

emonstrated by means of the average PNCC and PORGM (p < 10 − 6 in

ll cases; see Appendix 3) ( Fig. 7 A, B) (also see Appendix 2), as well

s by the average PJI (in the majority of brain regions) (see Appendix

) ( Fig. 7 C). Similar results were obtained for spatial normalization of

lder adult data collected on an MRI scanner from a different vendor

han those used in Dataset 2 (see Appendix 4). In addition, the stan-

ard deviation of signals from normalized data of Dataset 2 was lower

n more voxels when using MIITRA_0.5mm as reference compared to

ther templates (p < 10 − 10 in all cases) ( Fig. 8 ). Furthermore, the stan-

ard deviation of cortical thickness of spatially normalized data from

ataset 2 was lower when MIITRA_0.5mm was used as a reference com-

ared to other templates (p < 10 − 10 in all cases) ( Fig. 9 ), suggesting better

atching of the cortex across older adults when using MIITRA_0.5mm. 

https://www.nitrc.org/projects/miitra
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Fig. 8. (A) Maps and (B) cumulative distribu- 

tions of the standard deviation of signals across 

spatially normalized data of Dataset 2 when us- 

ing different templates as reference. 
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.3. Ability to detect small inter-group differences in voxel-based 

orphometry studies 

Power analysis showed that use of the MIITRA_0.5mm template al-

owed detection of smaller inter-group morphometric differences in gray

atter compared to other templates. This was demonstrated as a higher

umber of gray matter voxels with cooler colors and a lower number of

oxels with warmer colors when using MIITRA_0.5mm ( Fig. 10 A). Also,

he cumulative distribution of the minimum detectable inter-group mor-

hometric differences was significantly higher for MIITRA_0.5mm com-

ared to other templates (p < 10 − 10 in all cases) ( Fig. 10 B). 

.4. Representativeness of the older adult brain 

Registration of older adult data from Dataset 2 to MIITRA_0.5mm

esulted in a higher number of voxels with an average deformation near

ero compared to registration to MCALT, ICBM2009b, Colin27, HCP-

200, ICBM2009c, OASIS, SRI24, UNC-Adult and IXI-ANTs (p < 10 − 10 in

erms of both expansion and contraction), as demonstrated by means of

he average log-Jacobian determinant ( Fig. 11 ). This suggests that MI-

TRA_0.5mm is more representative of the older adult data of Dataset

 than the templates mentioned above. Only MIITRA_1mm and SS tem-

lates resulted in even less deformation (p < 10 − 10 in terms of both ex-

ansion and contraction). 
8 
. Discussion 

The present work constructed a 0.5mm isotropic resolution standard-

zed T1w template of the older adult brain, termed MIITRA_0.5mm,

sing principles of super resolution (available for download at

ww.nitrc.org/projects/miitra ). The newly constructed template was

ystematically compared to several other standardized and study-

pecific templates in terms of image quality and performance when

sed as a reference for spatial normalization of older adult data. It was

emonstrated that the application of multiple image super resolution

rinciples in template construction successfully enhanced the spatial res-

lution of the new population-based brain MRI template compared to

hat of a template constructed using a conventional template building

pproach and the same data. The enhanced resolution of MIITRA_0.5mm

mproved visualization of fine structural details of the older adult brain,

n important prerequisite for providing high spatial matching of such

tructures across individuals and for detecting small morphometric dif-

erences. In addition, MIITRA_0.5mm exhibited the highest image sharp-

ess and did not contain image artifacts observed in some of the other

emplates considered here, both characteristics also contributing to high

patial matching. As anticipated, MIITRA_0.5mm provided higher inter-

ubject spatial normalization precision for older adult data compared

o all other templates. Consequently, MIITRA_0.5mm also enabled de-

ection of smaller inter-group morphometric differences in older adult

rain data compared to all other templates. Finally, MIITRA_0.5mm was

https://www.nitrc.org/projects/miitra
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Fig. 9. (A) Maps and (B) cumulative distribu- 

tions of the standard deviation of cortical thick- 

ness of spatially normalized data of Dataset 2 

when using different templates as reference. 
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mong the templates that were most representative of older adult brain

ata. Overall, the present work generated an important new resource

or studies of aging. 

.1. Super resolution, image sharpness and artifacts 

Application of multiple image super resolution principles in tem-

late construction successfully enhanced the spatial resolution of MI-

TRA_0.5mm compared to a template developed using a conventional

emplate building approach and the same raw data (i.e. MIITRA_1mm).

he enhanced resolution of the new template improved visualization

f fine brain structures. These findings are in agreement with previous

ork that applied super resolution principles in the development of a

igh angular resolution diffusion imaging (HARDI) brain template from

ow angular resolution diffusion data (i.e. super resolution in angular

ampling) and demonstrated that two-way and three-way fiber crossings

ere resolved in the HARDI template even though such crossings were

ot visible in the raw data ( Varentsova et al., 2014 ). As careful align-

ent across individuals in space is essential for successful application

f multiple image super resolution principles in template construction,

recise non-linear image registration has played a catalytic role in the

resent work. Nevertheless, even the top-performing image registration

lgorithm used here has typically lower precision in those cortical de-

ails that are drastically different across individuals. This means that res-

lution enhancement in those parts of the brain depends on the number

f persons precisely aligned, while those imprecisely aligned contribute
9 
o noise. The latter appears to not be of concern in MIITRA_0.5mm prob-

bly due to the high number of participants considered in its construc-

ion and the template building approach employed. The same factors

lso contributed to the high sharpness and lack of visible artifacts in

IITRA_0.5mm. Overall, MIITRA_0.5mm exhibits enhanced detail and

mage quality, both of which are important prerequisites for providing

igh spatial normalization precision of older adult data. 

.2. Inter-subject spatial normalization precision and its impact on the 

bility to detect small inter-group differences in voxel-based morphometry 

tudies 

MIITRA_0.5mm allowed higher inter-subject spatial normalization

recision when used as a reference for normalization of older adult

ata compared to other templates considered in this work. This was

anifested by means of three whole brain and one cortex-specific met-

ics. The factors that led to this improvement in normalization preci-

ion are explained in the previous section. In turn, precise alignment

f tissues across individuals directly impacts the sensitivity and speci-

city of voxel-wise analyses ( Zhang and Arfanakis, 2018 ). The present

ork demonstrated that MIITRA_0.5mm allowed detection of smaller

nter-group differences in voxel-based morphometry studies compared

o other templates. In studies of the older adult brain, being able to de-

ect smaller changes is important as it directly translates into being able

o detect changes earlier. 



M.R. Niaz, A.R. Ridwan, Y. Wu et al. NeuroImage 248 (2022) 118869 

Fig. 10. (A) Maps and (B) cumulative distri- 

butions of the minimum detectable inter-group 

morphometric differences in gray matter when 

using different templates as reference, accord- 

ing to power analysis in non-demented older 

adults of Dataset 2. 
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.3. Representativeness of the older adult brain 

MIITRA_0.5mm, MIITRA_1mm and SS were most representative of

lder adult brain data compared to other templates. This was antic-

pated because these were the only three templates constructed with

ata exclusively from older adults (i.e. 65 years of age and older).

n contrast, registration of older adult data to young adult templates

uch as ICBM2009b, ICBM2009c, HCP-1200, Colin27, UNC-Adult, or

o templates combining data across a wide age-range such as MCALT,

ASIS, SRI24, IXI-ANTS, required larger amounts of deformation on

verage (i.e. extensive contraction of the ventricles and sulci, and

xpansion of gray and white matter tissue) which is undesirable in

emplate-based studies ( Dickie et al., 2016 a, 2016b ; Lemaître et al.,

005 ; Matsumae et al., 1996 ; Sullivan et al., 1995 ; Ridwan et al., 2021 ).

hese findings have important implications in template selection for

tudies on older adults which traditionally have used the young adult

r wide age-range templates mentioned above due to the lack of a ded-

cated older adult template. The primary reason why MIITRA_1mm re-

uired on average smaller amounts of deformation of older adult data

han MIITRA_0.5mm, an observation that was also made when compar-

ng ICBM2009c (1mm voxel size) to ICBM2009b (0.5mm voxel size),

as probably the fact that the larger voxels in MIITRA_1mm limited

ocal deformations. SS was shown to be the most representative of the

lder adult brain, which is expected since it was built from the same

ata used in this evaluation (Dataset 2). Nevertheless, MIITRA_0.5mm

s  

10 
as several important advantages over SS as it exhibited higher spatial

esolution, higher sharpness, and allowed higher spatial normalization

recision and detection of smaller intergroup differences than the SS

emplate. And since MIITRA_0.5mm is standardized, it requires no time

or development, it provides consistently high performance, and may

acilitate integration and comparison of results across studies. 

.4. Limitations 

In addition to its multiple strengths presented above, the present

ork also has a few limitations. First, the performance of the new tem-

late was compared to only 11 other commonly used templates, and

ot to all available T1w templates. However, an exhaustive compar-

son was conducted for MIITRA_1mm by Ridwan et al. (2021) , using

he exact same data of Dataset 2 and identical metrics as those used in

he present work. Since MIITRA_0.5mm was compared to MIITRA_1mm

n the present work, and the latter outperformed a large number of

emplates considered in Ridwan et al. (2021) , one can safely conclude

hat MIITRA_0.5mm also outperforms those templates. In addition, the

resent work evaluated the performance of MIITRA_0.5mm as a refer-

nce for alignment of data from older adults in the 65–95 years age-

ange using a state of the art registration algorithm and ADNI T1w

ata of typical image quality, however, future work should also consider

ther registration algorithms as well as data with different image qual-

ty and from different age-ranges. This is especially true for data with

ubmillimeter spatial resolution, which are not yet publicly available
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Fig. 11. (A) Maps and (B) histograms of the 

average log-Jacobian determinant of the defor- 

mation of older adult data of Dataset 2 for reg- 

istration to different templates. 
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or a sufficiently large number of older adults to facilitate the statistical

nalyses conducted here. Nevertheless, we anticipate that the main con-

lusions of the present work would remain unchanged if submillimeter

esolution data were used in template evaluation instead of Dataset 2,

specially considering that spatial normalization of submillimeter reso-

ution data to any 1mm isotropic template would lead to loss of spatial

etails. 

. Conclusion 

The present work constructed a 0.5mm isotropic resolution standard-

zed T1w template of the older adult brain, named MIITRA_0.5mm, us-

ng principles of super resolution. The new template exhibited higher

patial resolution and improved visualization of fine structural details

f the older adult brain compared to a template constructed using a

onventional template building approach and the same data. In addi-

ion, MIITRA_0.5mm exhibited the highest image sharpness and did

ot contain image artifacts observed in some of the other templates

onsidered here for comparison. Due to the above enhancements, MI-

TRA_0.5mm provided higher inter-subject spatial normalization preci-

ion for older adult data compared to all other templates. Consequently,

IITRA_0.5mm also enabled detection of smaller inter-group morpho-

etric differences in older adult brain data compared to the other tem-

lates. Finally, MIITRA_0.5mm was among the templates that were most

epresentative of older adult brain data. Overall, the new template con-
11 
tructed here is an important new resource for studies of aging, and the

ndings of the present work have important implications in template

election for studies on older adults. The MIITRA_0.5mm template is

vailable for download at www.nitrc.org/projects/miitra . 
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